Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> We discuss a no-boundary proposal for a subregion of the universe. In the classical approximation, this density matrix involves finding a specific classical solution of the equations of motion with no boundary. Beyond the usual no boundary condition at early times, we also have another no boundary condition in the region we trace out. We can find the prescription by starting from the usual Hartle-Hawking proposal for the wavefunction on a full slice and tracing out the unobserved region in the classical approximation. We discuss some specific subregions and compute the corresponding solutions. These geometries lead to phenomenologically unacceptable probabilities, as expected. We also discuss how the usual Coleman de Luccia bubble solutions can be interpreted as a possible no boundary contribution to the density matrix of the universe. These geometries lead to local (but not global) maxima of the probability that are phenomenologically acceptable.more » « lessFree, publicly-accessible full text available February 1, 2026
-
A bstract We consider the scattering of high energy and ultra relativistic spherically symmetric shells in asymptotically AdS D spacetimes. We analyze an exclusive amplitude where a single spherically symmetric shell goes in and a single one comes out, such that the two have different global symmetry charges of the effective gravity theory. We study a simple wormhole configuration that computes the square of the amplitude and analyze its properties.more » « less
-
A bstract We discuss aspects of the possible transition between small black holes and highly excited fundamental strings. We focus on the connection between black holes and the self gravitating string solution of Horowitz and Polchinski. This solution is interesting because it has non-zero entropy at the classical level and it is natural to suspect that it might be continuously connected to the black hole. Surprisingly, we find a different behavior for heterotic and type II cases. For the type II case we find an obstruction to the idea that the two are connected as classical solutions of string theory, while no such obstruction exists for the heterotic case. We further provide a linear sigma model analysis that suggests a continuous connection for the heterotic case. We also describe a solution generating transformation that produces a charged version of the self gravitating string. This provides a fuzzball-like construction of near extremal configurations carrying fundamental string momentum and winding charges. We provide formulas which are exact in α ′ relating the thermodynamic properties of the charged and the uncharged solutions.more » « less
An official website of the United States government

Full Text Available